The Volume Profile for the Aquation Reactions of trans-[CoBr(NO₂)(en)₂]⁺ and trans-[CoCl(N₃)(en)₂]⁺

Yoichi Kitamura,* Shinji Nariyuki, and Toshiaki Kondo^{††}
Department of Chemistry, Faculty of Science, Ehime University, Matsuyama, Ehime 790
(Received January 27, 1983)

Synopsis. For the aquation of *trans*-[CoBr(NO₂)-(en)₂]⁺, the activation volume at atmospheric pressure (ΔV^{\ddagger}) is 0.3 ± 0.2 cm³ mol⁻¹ at 10 °C, and the reaction volume (ΔV) is -10.4 ± 0.1 cm³ mol⁻¹ at 7.4 °C, both in pure water. For *trans*-[CoCl(N₃)(en)₂]⁺, ΔV^{\ddagger} is 0.7 ± 0.6 cm³ mol⁻¹ at 30 °C in 0.011 M HClO₄ (1 M=1 mol dm⁻³) and ΔV is -11.0 ± 0.6 and -11.4 ± 0.3 cm³ mol⁻¹ at 25 °C in 0.008 M HClO₄, thus yielding the trans and the cis aqua products respectively.

In a recent report, one (Y. K.) of the present authors has examined the magnitudes of ΔV^{\pm} and ΔV of 14 aquation reactions of the Co^{III} complex ion, where the leaving ligand is a monovalent anion.1) It has been indicated that the ΔV 's for 10 such reactions lie in the relatively limited range from -7 to -13 cm³ mol⁻¹ and are typically -10 cm³ mol⁻¹. A general feature that has also been pointed out is that the ΔV^{\pm} is large (ca. 14 cm³ mol⁻¹) when the initial complex contains the strongly electron-donating NH₂⁻ nonlabile ligand; moderate when the initial complex contains a moderately electron-donating Clor N₃-, or moderately electron-withdrawing NO₂-, nonlabile ligand, and small (ca. -9 cm³ mol⁻¹) and close to the corresponding ΔV when the initial complex does not contain any nonlabile ligand with electron-donating or -withdrawing power.

In the present work, ΔV^{\dagger} and ΔV are obtained for two additional reactions, where the initial complex contains a nonlabile NO₂⁻ or N₃⁻ ligand:

$$trans-[CoBr(NO_{2})(en)_{2}]^{+} + H_{2}O \longrightarrow trans-[Co(NO_{2})(en)_{2}H_{2}O]^{2+} + Br^{-}, \qquad (1)^{2}$$

$$trans-[CoCl(N_{3})(en)_{2}]^{+} + H_{2}O \longrightarrow 80\% trans-, 20\% cis-[Co(N_{3})(en)_{2}H_{2}O]^{2+} + Cl^{-}. \qquad (2)^{3}$$

It is tested whether or not the volume profiles of Reactions 1 and 2 are pertinent to the general tendency and whether or not the previous interpretation of the ΔV^{\pm} is also applicable in these cases. In Reaction 2 the trans configuration of the reactant is not retained. On the basis of this, the geometry of the transition state in Reaction 2 should differ from those in analogous reactions, where the geometries are retained. We are further interested in whether or not this feature of Reaction 2 is remarkable in its ΔV^{\pm} . The isomerization velocity of trans-[Co(NO₂)(en)₂H₂-O]²⁺ to the cis-isomer is sufficiently slow, and the kinetic course of Reaction 1 is not interrupted by this

isomerization.⁵⁾ The trans- and cis- [Co(N₃)(en)₂H₂-O]²⁺ have an isosbestic point at 533 nm, where the velocity of Reaction 2 can be followed spectrophotometrically.³⁾

Experimental

Materials. The trans- $[CoBr(NO_2)(en)_2]ClO_4(1)^2$ and trans- $[CoCl(N_3)(en)_2]ClO_4(2)^6$ were obtained by the published methods and identified by means of elemental analysis (C, H, N).

Kinetic Measurements and Dilatometry. The procedures were the same as in the previous report except that a Heise high-pressure gauge was used.¹⁾

Results and Discussion

Kinetic Results. The rate constants at each pressure are shown in Table 1. The k-values at each pressure are fitted to $\ln(k/k_0)/P=a+bP$ by the least-squares method, where k_0 is the average rate constant at atmospheric pressure. ΔV^{\pm} is obtained by the use of $\Delta V^{\pm}=-RT(\mathrm{dln}\,k/\mathrm{d}P)=-RTa$. The rate constants are rather independent of the pressure, and the resultant ΔV^{\pm} 's are close to zero (Table 2). Reaction 1 was followed in pure water and in an 0.01 M HClO₄ aqueous solution. The rate constants at each pressure are essentially the same in both.

Table 1. Rate constants $(k/10^{-5} \text{ s}^{-1})$ of the aquation reaction at each pressure (P/bar)

	EACII	ON AI	EACH	PKESSUF	(I / L	ai)	
1,a) trans-[CoBr((NO_2) (en) ₂]+,	1 mM	in H ₂	O,b) 10) °C,°)
376 nm, ^{d)}	ln(/	$k/k_{\rm o})/P$	=-(0	.12±0	$.07) \times$	10-4 — (1.6±
$0.5) \times 10^{-8}$	P^{e}						
P	1	1	400	800	1200	1600	2000
k .	58.2	56.3	56.2	55.2	55.2	53.0	53.5
	55.8	57.8	56.7	56.2	54.8	54.5	51.2
1,a) trans-[0	CoBr(NO_2) (e	n) ₂]+,	l mM i	n 0.01	м нс	lO ₄ , ^{b)}
10 °C,c) 37	'6 nm	d $\ln(k)$	$(k_{\rm o})/P$	= -(0.	08 ± 0	$08) \times 1$	0-4-
(2.2 ± 0.7)						·	
\boldsymbol{P}	1	1	400	800	1200	1600	2000
k :	58.5	57.5	58.2	57.0	55.2	53.8	53.7
!	59.2	56.8	57.2	55.8	55.5	53.7	52.3
2,a) trans-	[CoC	$l(N_3)$ (e	n) ₂]+,	2.6 n	n M in	n 0.0	11 M
HClO ₄ ,b) 3	0 °C,	³⁾ 533 n	m, ^{d)} ln	$(k/k_{\rm o})/$	P = -($0.27 \pm$	0.25)
$\times 10^{-4} - (2$							ŕ
P	1	1	400	800	1200	1600	2000
k :	37.7	35.5	35.3	34.8	33.3	32.8	32.3
	36.5	36.3	37.2	33.5	33.2	33.0	32.7

a) Reaction number. b) Concentration of the complex.

[†] Presented at the 6th International Symposium on Solute-Solute-Solvent Interactions, July, 1982, at Minoo, Japan.

^{††} Present address: Kawanoe High School, Kawanoe, Ehime 799-01.

c) Reaction temperature. d) Reaction was followed at this wavelength. e) Standard deviations are indicated.

Table 2.	VOLUME	PROFILE	(V	$(cm^3 mol^{-1})$	FOR	THE A	AQUATION	OF	$[CoXY(en)_2]^+$

Reaction No.	Reactant	Configuration ^{a)}	ΔV^* ($T/^{\circ}$ C, solvent)	ΔV ($T/^{\circ}\mathrm{C}, \mathrm{solvent})$
1 ^{b)}	trans-[CoBr(NO ₂)(en) ₂] ⁺	100% trans	$0.3\pm0.2~(10,~H_2O)$ $0.2\pm0.2~(10,~10~mM$ $HClO_4)$	-10.4 ± 0.1 (7.4, H ₂ O)
2 ^{b)}	$\textit{trans-}[CoCl(N_3)(en)_2]^+$	80% trans, 20% cis	0.7±0.6 (30, 11 mM HClO ₄)	-11.0 ± 0.6 (25, 8 mM HClO ₄) ^{c)}
				-11.4 ± 0.3 (25, 8 mM HClO ₄) ^{d)}
3e)	trans- $[CoCl(NO_2)_2(en)_2]^+$	100% trans	0.1 (15, H ₂ O)	-10.4 (15, H_2O)
4 e)	cis-[CoCl(NO ₂) ₂ (en) ₂] ⁺	100% cis	$0.9 (30, H_2O)$	$-9.3 (25, H_2O)$
5 ^{f)}	cis-[CoCl ₂ (en) ₂] ⁺	100% cis	-0.3 ± 0.4 (30, 10 mM HNO ₃)g)	$-14.2 (25, H_2O)$
6 ^{f)}	$trans[CoCl_2(en)_2]^+$	65% trans, 35% cis	-1.7 ± 1.1 (25, H ₂ O)	$-13.9 (25, H_2O)$

a) Configuration of the aqua product. b) This work. c) For the trans aqua product. d) For the cis aqua product. e) Ref. 1. f) Ref. 7. g) Ionic strength = 0.1 M (NaClO₄).

Dilatometric Results. Reaction 1 was followed at 7.4 °C in a 4.0 mM aqueous solution of 1 from a 52 to a 99% completion. ΔV was obtained from the intercept at t=0 of the $\ln(h_t-h_\infty)$ vs. t plot, where h_t is the meniscus height at the reaction time (t). The h_{∞} value is calculated from h_t 's, and $k=40.7\times10^{-5}$ s⁻¹ is obtained from this plot. The volume change in a 4.0 mM solution of 2 in 0.008 M HClO₄ was followed at 25 °C from a 40 to a 90% completion. The total volume (V) of the solution is related to the partial molal volume (\overline{V}_i) and the mole number (n_i) of each component (i) in the solution as: $V = \sum n_i \overline{V}_i$. At several stages of Reaction 2, n_i 's were calculated according to the following scheme, where the initial product of the aquation consists of 80% trans and 20% cis aqua complex:3)

We used the literature rate constants at 25 °C in an 0.01 M HClO₄ aqueous solution ($k=22.0\times10^{-5}$ s⁻¹, $k_1=7.2\times10^{-5}$ s⁻¹, $k_1=2.6\times10^{-5}$ s⁻¹).³⁾ The ΔV 's of Reaction 2 were obtained for the trans aqua and the cis aqua products respectively by solving a set of simultaneous equations for several reaction stages. Two independent runs were performed. ΔV is -10.7 ± 0.5 and -11.3 ± 0.6 cm³ mol⁻¹ for the trans product, and -11.4 ± 0.3 and -11.3 ± 0.3 cm³ mol⁻¹ for the cis product. These results indicate that the difference between the \overline{V}_i 's of trans-[Co(N₃)(en)₂H₂O]²⁺ and of cis-[Co(N₃)(en)₂H₂O]²⁺ is small enough. Assuming this difference as zero, $k=21.2\times10^{-5}$ and 21.9×10^{-5} s⁻¹ are obtained from the Guggenheim plots of the dilatometric data, which agree well with

that in the literature.³⁾ The results are summarized in Table 2, along with four volume profiles of analogous reactions.

Discussion. It can be noticed that, in Reactions 1 and 2, the ΔV^{\pm} 's are close to zero and the ΔV 's are close to $-10 \text{ cm}^3 \text{ mol}^{-1}$. Thus, the volume profiles of Reactions 1 and 2 are quite pertinent to the general tendency indicated in the previous report.¹⁾ Therefore, these volume profiles can be interpreted along the previous line of arguments. The transition state is composed of an ion pair between the leaving ligand and the five-coordinate intermediate, $[Co(NO_2)(en)_2\cdots OH_2]^{2+}\quad \text{or}\quad [Co(N_3)(en)_2\cdots OH_2]^{2+},$ where the entering water molecule is halfway between the vacant coordination site and the first solvation sphere. The volume profiles of Reactions 1-6 are quite similar to each other. The magnitudes of ΔV^{\pm} are not affected by the geometrical difference in the transition state between those for Reactions 2 and 6 and those for Reactions 1, 3, 4, and 5. This is further in accordance with the fact that the ΔV 's of Reaction 2 are quite similar in both cases where cis and trans aqua products are formed. It seems that neither ΔV^* nor ΔV is sensitive to the stereochemical course of the reaction.

References

- 1) Y. Kitamura, Bull. Chem. Soc. Jpn., 55, 3625 (1982).
- 2) C. H. Langford and M. L. Tobe, *J. Chem. Soc.*, **1963**, 506.
- 3) P. J. Staples and M. L. Tobe, J. Chem. Soc., 1960, 4803.
 - 4) M. L. Tobe, Inorg. Chem., 7, 1260 (1968).
 - 5) M. N. Hughes, J. Chem. Soc., 1967, 1284.
- 6) P. J. Staples and M. L. Tobe, J. Chem. Soc., 1960, 4812
- 7) G. Daffner, D. A. Palmer, and H. Kelm, *Inorg. Chim. Acta*, **61**, 57 (1982).